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Abstract

This prospective acute gastroenteritis (AGE) surveillance was conducted in the inpatient and 

emergency room settings at a referral pediatric hospital to determine the prevalence of 

diarrheagenic Escherichia coli (DEC) in children<12 years of age with AGE in Davidson County, 

Tennessee. Subjects 15 days to 11 years of age, who presented with diarrhea and/or vomiting, 

were enrolled. Stool specimens were processed for detection of DEC using multiplex polymerase 

chain reaction. From December 1, 2011, to June 30, 2012, a total of 79 (38%) out of 206 stool 

specimens from children with AGE tested positive for E. coli. A total of 12 (5.8%) out of 206 

stool specimens from children with AGE were positive for a DEC. Eight (67%) out of these 12 

were positive for enteropathogenic E. coli, and the remaining 4 were positive for 

enteroaggregative E. coli. DEC clinical isolates clustered with known E. coli enteropathogens 

according to multilocus sequencing typing.
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1. Introduction

The Centers for Disease Control and Prevention (CDC) estimates that 0.6 episodes of 

diarrhea per person occur every year in the United States (Jones et al., 2007). Rates are 

higher for children under the age of 5 years. CDC estimates that 1 in 6 Americans per year 

(or 48 million people) is infected by foodborne pathogens, resulting in 128,000 

hospitalizations and 3000 deaths (Scallan et al., 2011a, 2011b). Most acute gastroenteritis 

(AGE) episodes (90%) were caused by 31 enteric pathogens including viruses 59%, bacteria 

(39%), and parasites (2%). The leading causes of AGE were norovirus (58%), nontyphoidal 

Salmonella spp. (11%), Clostridium perfringens (11%), Campylobacter spp. (9%), and 

Staphylococcus aureus (Scallan et al., 2011b). The leading causes of hospitalization were 
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nontyphoidal Salmonella spp. (35%), norovirus (26%), Campylobacter spp. (15%), and 

Shiga toxin–producing Escherichia coli 0157, while the leading causes of death were 

nontyphoidal Salmonella spp. (28%), norovirus (11%), and Campylobacter spp. (6%).

Shiga toxin–producing E. coli (STEC) are an important cause of foodborne illnesses in the 

United States, and the severity of the infection results in hospitalization and death. STEC are 

leading causes of dysenteric diarrhea and mortality secondary to hemolytic uremic syndrome 

(HUS) (Bavaro, 2012; Johnson et al., 2006; Rangel et al., 2005). Limited information is 

available on other E. coli intestinal pathotypes. Based on their mechanism of pathogenicity 

and unique arrays of virulence factors, the different pathotypes are designated 

enterotoxigenic (ETEC), enteropathogenic (EPEC), enteroaggregative (EAEC), 

enteroinvasive (EIEC), diffusely adherent (DAEC), and Shiga toxin–producing (STEC)/

enterohemorrhagic E. coli. Since diagnostic tools to differentiate these E. coli pathogens are 

typically not available at clinical laboratories or reference laboratory centers, little is known 

about their epidemiology.

We attempted to characterize and describe the epidemiology of E. coli pathogens in children 

who presented with AGE at a large, academic medical center in Nashville, Tennessee. We 

isolated E. coli strains from stools of children with diarrhea in a defined geographic area and 

tested them for genetic markers of known pathotypes of diarrheagenic E. coli (DEC).

2. Materials and methods

2.1. Study design and enrollment

This prospective, cross-sectional active surveillance study enrolled children who were 15 

days to 11 years old and who resided in Davidson County, Tennessee, presenting to the 

Vanderbilt Children's Hospital Emergency Department and inpatient units with diarrhea 

and/or vomiting from December 1, 2011, through June 30, 2012. AGE cases were enrolled if 

diarrhea, defined as ≥3 loose stools in a 24-hour period, or vomiting, ≥1 episode in a 24-

hour period, had occurred. Subjects were excluded for the following criteria: not residing in 

Davidson County, Tennessee, having symptoms at the time of presentation lasting ≥10 days 

in duration, immunocompromised, or an inability to understand English or Spanish. 

Demographic data, illness characteristics, medication, and travel history were obtained by 

chart review and standardized questionnaires. This study was approved by the Vanderbilt 

University Institutional Review Board (no. 120099).

2.2. Processing of stool specimens

Specimens consisted of at least 1 gram of whole stool in sterile containers or swabs of stool 

preserved in Cary–Blair transport media. Specimens plated on MacConkey agar (Becton 

Dickinson and Company, Sparks, MD, USA) and incubated overnight at 37 °C were 

examined for the presence of lactose-fermenting, nonmucoid colonies. Such isolates were 

subcultured onto eosin–methylene blue (EMB) agar (Remel, Lenexa, KS, USA) and 

incubated for 18–24 hours at 37 °C. Colonies with characteristic E. coli morphology on 

EMB agar (metallic green sheen) were inoculated into sulfide-indole-motility medium 

(Neogen Corporation, Lansing, MI, USA) for biochemical testing. Presumptive E. coli 
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isolates that were indole positive, motile, gas-producing, and negative for hydrogen sulfide 

production were confirmed as E. coli and stored at −80 °C for further testing as described 

before (Gómez-Duarte et al., 2010).

2.3. Preparation of DNA and DNA amplification by polymerase chain reaction (PCR) assays

Genomic DNA was isolated from E. coli clinical isolates by culturing strains in 2-mL Luria 

broth (LB) at 37 °C with shaking at 225 rpm overnight. A 200-μL aliquot of bacterial culture 

was centrifuged and pellet resuspended in 500 μL of Tris-EDTA buffer, boiled for 5 minutes 

and centrifuged at 10,000×g for 3 minutes. The supernatant containing crude genomic DNA 

was used as template for PCR. Two separate multiplex PCR reactions were performed on 

each DNA sample as described before (Gómez-Duarte et al., 2010). Mix 1 detected EPEC, 

EAEC, and STEC, and mix 2 detected ETEC, EIEC, and DAEC. Both mix 1 and mix 2 

reactions contained 18-μL PCR blue master mix (Invitrogen, Carlsbad, CA, USA), 1 μL of 

oligonucleotide mix 1 or oligonucleotide mix 2, and 1-μL DNA template. Reactions were 

preheated at 94 °C for 2 minutes and amplified for 40 cycles consisting of 30 seconds at 92 

°C, 30 seconds at 58 °C, and 30 seconds at 72 °C. PCR products were separated by 

electrophoresis using a 2% agarose gel containing ethidium bromide. Gel images were 

captured and analyzed.

2.4. Serotyping

O– and H– typing of DEC isolates was conducted at Pennsylvania State E. coli Reference 

Center (Pennsylvania State University, University Park, PA, USA). O– serotyping was 

conducted using antisera generated against E. coli serogroups designated O1-O187 with the 

exceptions of O31, O47, O67, O72, O94, and O122 as these are not designated. H– typing 

was performed by PCR–restriction fragment length polymorphism of fliC flagellar gene 

responsible for H types.

2.5. Antimicrobial susceptibility testing

Antimicrobial susceptibility to 12 different antibiotics was tested using BD BBL™ Sensi-

Disc™ Susceptibility Test Discs methods (Becton, Dickinson and Company Sparks, MD, 

USA). Strain activity was tested against cefazolin, ceftriaxone, ampicillin, amoxicillin/

clavulanic acid, ceftazidime, cefuroxime, cefepime, ciprofloxacin, gentamicin, meropenem, 

trimethoprim/sulfamethoxazole, and piperacillin/tazobactam (Qin et al., 2008). The zones of 

bacterial growth inhibition were interpreted according to the 2014 guidelines of the Clinical 

and Laboratory Standards Institute. Controls used for testing included the E. coli ATCC 

29522 as negative control (susceptible to all antibiotics) and Klebsiella pneumoniae ATCC 

700603D-5 as positive control (resistant to all beta-lactam antibiotics).

2.6. Biofilm formation assay

Biofilm quantitative assay was performed as described previously (Wakimoto et al., 2004). 

In brief, cultures were diluted in 297-μL Dulbecco's Modified Eagle Medium at a ratio of 

1:100 in a microcentrifuge tube and vortexed. One hundred microliters of the bacteria 

dilution was added to a 96-well plate, which was sealed with an adhesive film. The plate 

was then incubated at 37 °C for 24 hours. The plate was washed, and 125 μL of 0.1% crystal 
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violet solution was added to each well and incubated at room temperature for 15 minutes. 

The crystal violet was discarded and plate rewashed and air dried. Two hundred microliters 

of 95% ethanol was added to each well and incubated at room temperature for 15 minutes. 

The solubilized crystal violet was transferred to a 96-well Immulon 2 HB plate, and the 

optical density (OD) was measured at 590 nm. A strain was considered positive if the OD 

≥0.089.

2.7. Multilocus sequence typing (MLST)

E. coli clinical isolates were analyzed by MLST as described online (http://

mlst.warwick.ac.uk/mlst/). Internal fragments from 7 housekeeping genes, adk (adenylate 

kinase), fumC (fumarate hydratase), gyrB (DNA gyrase), icd (isocitrate/isopropylmalate 

dehydrogenase), mdh (malate dehydrogenase), purA (adenylosuccinate dehydrogenase), and 

recA (ATP/GTP binding motif of recombinase A), were amplified by PCR and DNA 

sequenced as described before (Wirth et al., 2006). Sanger DNA sequencing was conducted 

by the DNA core facility at Vanderbilt University. Forward and reverse DNA sequences for 

each gene and strain were aligned for comparison and editing. Sequence editing was 

conducted with DNADynamo software (Blue Tractor Software, North Wales, UK). 

Sequences for the 7 genes of each strain were concatenated to produce an alignment 

sequence of 3423 bp. Alignment of concatamers used ClustalW software available online at 

http://www.phylogeny.fr/version2_cgi/simple_phylogeny.cgi (Dereeper et al., 2008, 2010). 

Phylogenetic trees for all E. coli isolate and E. coli control MLST concatamers were 

conducted by bootstrapping procedure. E. coli control MLSTs included STEC, EPEC and 

ETEC strains reported in the http://mlst.warwick.ac.uk/mlst/ database and previously 

isolated from human cases of diarrhea. Control E. coli ancestral phylogenetic groups 

sequences were also obtained from the same database, including the E. coli Reference 

(ECOR) collection (Ochman and Selander, 1984). MLST-based clonal groups were defined 

as 2 or more E. coli strains with identical MLST sequence.

2.8. Statistical analysis

Data were analyzed using descriptive statistics, and epidemiologic variable distributions 

were identified. Central tendency and dispersion values were calculated for all variables 

analyzed using STATA version 12.

3. Results

3.1. Demographic characteristics of children with diarrhea

During the study period, 410 subjects were enrolled with AGE, and 299 of them consented 

for further E. coli testing. From the 299 subjects enrolled, 206 (69%) provided stool 

specimens for further analysis (Table 1). Eighty percent of these subjects (165 of 206) were 

<5 years old, and 54% were <1 year old, and gender was similar (54% male, 46% female).

3.2. Diarrheagenic E. coli identified among children with diarrhea

E. coli isolates were recovered from 38% (79 of 206) of the AGE specimens. Five individual 

E. coli isolates were obtained from each stool specimen up. Six percent (12 of 206) of the 

AGE specimens were positive for DEC. In those specimens, a minimum of 1 out the 
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maximum of 5 E. coli isolates per stool specimen was positive. Of the 12 subjects positive 

for DEC, the distribution of pathotypes revealed EPEC (67%, n = 8) and EAEC (33%, n = 

4). No STEC, ETEC, EIEC, or DAEC were identified. The mean age of subjects was 36 

months (Table 2). The mean age of subjects positive for EPEC was 25 months (SD 38, range 

2–114). Most cases of EPEC (6/8, 75%) were in children less than 5 years of age. The mean 

age of subjects positive for EAEC was 16.6 months (SD 16, range 5–39). All EAEC cases 

(4/4, 100%) were found in children less than 5 years of age (Table 2). None of the study 

subjects was found to have coinfections with multiple DEC. The majority of DEC were 

isolated from cases occurring during summer months.

3.3. Phenotypic and genotypic features of DEC strains

DEC isolates were characterized at the genetic and phenotypic levels. All EPEC strains (8 of 

8) were positive for the eae gene and negative for the bfpA gene indicating that they were 

atypical EPEC (aEPEC). Diverse numbers of serotypes were associated with EPEC strains, 

which included 4 O groups and 5 H groups. The majority of EPEC strains, 62% (5 of 8), 

were resistant to ampicillin (Table 3). All EAEC clinical isolates were positive for aggR and 

for aaiC. Three different O and H groups were recognized in the 4 EAEC clinical isolates. 

Only 2 strains had an identical serotype. All EAEC were resistant to ampicillin.

3.4. Few EAEC clinical isolates form biofilm of inert surfaces

EAEC strains typically form biofilms over inert and biological surfaces. To evaluate if 

EAEC clinical isolates form biofilms, individual colonies from cases with AGE were tested 

in a biofilm assay. Only 2 EAEC isolates from a single subject (ENIE-0245) were positive 

for biofilm formation (Fig. 1). The remaining EAEC isolates from the same subject and 

from the remaining 3 subjects with AGE were negative for biofilm formation. Control 

strains of E. coli produced the expected patterns: K12 and EAEC O42 were negative and 

positive, respectively, for biofilm formation.

3.5. Phylogenetic analysis

MLST conducted on E. coli pathotypes from subjects with AGE in Davidson County, 

Tennessee, revealed that they are genetically related to EPEC and EAEC clinical isolates 

previously reported in the MLST database (http://mlst.warwick.ac.uk/mlst/). MLST 

sequences from EPEC and EAEC isolates from children with AGE in Davidson County, 

Tennessee, were compared to similar sequences from EPEC clinical isolates from subjects 

with AGE and available in the MLST database (http://mlst.warwick.ac.uk/mlst/). We 

identified 5 previously reported MLST sequence types and 2 novel sequence types, among 

DEC isolates (Table 3). The 2 new sequence types ST4599 and ST4600, submitted to the 

MLST database, corresponded to the EAEC EN1I-0245 and EPEC EN1I-0027 strains 

(Table 3). The EPEC EN1I-027 MLST also had a new icd sequence designated icd486 that 

was also submitted to the MLST database. A phylogenetic tree constructed based on cluster 

W alignments of MLST concatemer sequences from Davidson County was compared with 

MLST sequences from ancestral E. coli strains from groups A, B1, B2, and D. As shown in 

Fig. 2, most DEC from Davidson County clustered with E. coli ancestral group A and B1 

strains. The only exceptions were the EPEC EN1I-0034 strain that clustered with ancestral 
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group B2 and the EPEC EN1I-0027 strain that was not related to any of the E. coli ancestral 

group strains.

EPEC isolates from Davidson County revealed close relationships with previously reported 

EPEC clinical isolates derived from AGE cases from different worldwide locations. EPEC 

EN1E-0139 strain with MLST sequence type 342 has a clonal relationship with EPEC 

Trh37, a Norway strain O177 isolated from a case of diarrhea (Fig. 3). EPEC strains 

EN1E-0224, EN1E-0241, and EN1I-0032 are also identical and cluster with E. coli ancestral 

group A and specifically with MLST sequence type 10 (ST10), associated with EPEC 

human pathogens. The remaining EPEC MLSTs we identified are not identical to EPEC 

from the MLST database, yet they are related (Fig. 3). The EPEC EN1I-0027 strain, for 

instance, is distantly related to EPEC 109 in the database, a Chinese O15 isolate from a case 

of diarrhea.

The 4 EAEC clinical isolates clustered with EAEC clinical isolates reported in the MLST 

database (Fig. 4). Two EAEC study strains formed a clonal group, in addition to identical 

MLST, and they also share identical O86:H27 serotype. Interestingly, the EAEC 

EN1E-0191 strain clustered also with ancestral group A, ST10, which is associated with 

both EPEC and EAEC strains. The EAEC EN1E-0245 strain is closely related to ST10, 

although it belongs to its own new sequence type ST4599 (Table 3).

4. Discussion

Diarrheagenic E. coli are a common cause of infant diarrhea in developing countries, but 

their impact in pediatric infectious diarrhea in industrialized nations remains unclear 

(Kotloff et al., 2013). Previous studies in the United States examining the prevalence of 

DEC have reported several E. coli pathotypes including STEC; EPEC; EAEC; and, less 

frequently, ETEC (Devasia et al., 2006; Denno et al., 2012; Klein et al., 2006; Nataro et al., 

2006). Our study identified atypical EPEC and EAEC as the 2 DEC pathotypes represented 

among patients with AGE in this geographic area. In our cohort, other E. coli pathotypes, 

including STEC strains which can cause HUS complications and mortality (Tarr et al., 

2005), were not found.

EPEC has been considered a cause of human disease since the 1940s (Walker-Smith, 1996). 

The identification of certain genetic determinants,eae (encodes intimin, which mediates 

aggregation) and bfpA (encodes the bundle-forming pilus), has aided in understanding EPEC 

pathogenicity (Jerse et al., 1990). aEPEC is defined as the presence of eae without bfpA 

(Trabulsi et al., 2002), and this represented the majority of our samples. While the 

pathogenic potential of aEPEC strains has been speculative in the past, a recent publication 

by the Global Enteric Multicenter Study (GEMS) showed aEPEC as the 5th most frequently 

detected pathogen in patients aged 0–11 months who died of AGE (Kotloff et al., 2013). The 

3.8% EPEC prevalence in this study is similar to that reported in other US geographic 

regions (Denno et al., 2012; Nataro et al., 2006; Caeiro et al., 1999). Additionally, typical 

EPECs (eae+, bfpA+) were found most frequently in that age group. Our EPEC-positive 

specimens were too few to demonstrate any association with age, which has been shown 

previously (Sakkejha et al., 2013). Interestingly, studies conducted in England and Peru 
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have shown that aEPEC is often found in children with and without diarrhea, whether in the 

developed or developing world (Hernandes et al., 2009; Ochoa and Contreras, 2011). 

Further surveillance studies in the United States that include healthy controls may provide 

clues on host risk factors as well as EPEC virulence factors that are associated with disease.

Of the 8 positive EPEC specimens, 2 (25%) had O119 serogroups consistent with 

recognized classic human EPEC serogrups (Levine and Edelman, 1984). One EPEC sample 

had an O serogroup bovine association (EPEC O35) (Blanco et al., 2005). Three EPEC 

isolates were nontypeable, and 2 belonged to O serogroups (O6, O108) not previously 

associated with EPEC strains. This may indicate that emergence of new O serogroups 

among EPEC strains in humans is associated with disease or with permanent or transient 

colonization of the human intestine without evidence of disease.

Studies from multiple cities in the United States, as well as cities in Brazil, Peru, and 

Burkina Faso, have repeatedly demonstrated that EAEC is the most frequently identified 

DEC found when specimens are tested for the 6 known pathotypes (Klein et al., 2006; 

Nataro et al., 2006; Bonkoungou et al., 2013; Cohen et al., 2005; Lozer et al., 2013). The 

1.9% EAEC prevalence in this study was lower than the one reported in the United States 

previously (Denno et al., 2012; Nataro et al., 2006). EAEC is typically defined by a 

“stacked-brick” aggregation pattern on HEp-2 cells directly associated with biofilm 

formation (Kaper et al., 1997). Increasingly, PCR methods detecting aggR (a central 

regulator of virulence) are being used for identification. Reliable ways of determining 

whether EAEC causes disease are difficult, as it is also known to cause asymptomatic 

colonization (Nüesch-Inderbinen et al., 2013). EAEC-positive specimens in this study were 

observed in younger children, consistent with observations in the United States and 

developing countries (Kotloff et al., 2013; Klein et al., 2006; Nataro et al., 2006; 

Bonkoungou et al., 2013; Lozer et al., 2013). The 4 EAEC strains isolated in the current 

study belonged to 3 serogroups: 2 O86 and 1 each O3 and O92. These serogroups have 

previously been associated with EAEC diarrheal disease and shown to display aggregative 

adhesion and biofilm formation (Knutton et al., 1992). Interestingly, only 1 EAEC isolate 

from 1 subject was positive for biofilm formation compared with EAEC strain control. This 

may indicate that the remaining EAEC isolates unable to form biofilm may be 

nonpathogenic intestinal colonizers. Alternatively, they may form biofilm only under host 

intestinal conditions.

Overall, DEC isolates were susceptible to the antibiotics tested in our study, with the 

exception of resistance to ampicillin (5/12, 41.6%). Only 1 strain was resistant to at least 3 

classes of antimicrobials. In contrast, multidrug resistance was reported among DEC isolates 

in Iran, Kenia, Mexico, and South Korea (Al Jarousha et al., 2011; Harel et al., 1991; Sang 

et al., 2012; Unno et al., 2011).

MLST typing of strains reveled associations between E. coli clinical isolates from Davidson 

County, Tennessee, and E. coli ancestral groups A and B1 known to be associated with 

intestinal disease (Gómez-Duarte et al., 2010; Guerra et al., 2014). EPEC clinical isolates 

demonstrated close MLST relationships with previously reported EPEC strains. Three EPEC 

and 1 EAEC Davidson County strains belong to MLST ST10, which includes EPEC and 
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EAEC pathotypes and belongs to the ancestral E. coli group A. These phylogenetic findings 

are strong evidence that EPEC and EAEC isolates are true intestinal pathogens with genetic 

traits that may favor human intestinal colonization.

The primary limitation of this study is low overall recovery of E. coli from diarrheal 

samples. Specimens were sometimes plated up to 15 days after collection, reducing the 

efficiency of E. coli culture isolation. Our study lacked an analysis of healthy control 

specimens, so association between E. coli pathotypes and disease cannot be definitively 

ascertained. As new multipanel systems for DEC detection become available, more accurate 

epidemiological data on DEC in the United States will be reported (Buss et al., 2015).

In summary, we have reported for the first time the presence of EPEC and EAEC E. coli 

pathotypes among children with AGE in Davidson County, Tennessee. The EPEC strains, 

the most frequently identified, were atypical as they do not carry bundle-forming pilus 

genes. EAEC strains were positive for both aggR and aaiC genes, yet only a single EAEC-

positive specimen was able to form biofilm. All pathotypes identified were genetically 

related to EPEC and EAEC pathotypes previously isolated from human cases of AGE. The 

role of these pathotypes in the epidemiology of AGE in Tennessee and in the United States 

warrants further systematic investigation. Information about common MLST types, 

serotypes, reservoirs, and antimicrobial resistance in prevalent EPEC and EAEC will aid in 

development of strategies to prevent spread and outbreaks.
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Fig. 1. 
Quantitative biofilm formation assay on EAEC isolates. Individual colonies for each case of 

diarrhea positive for EAEC were tested in the biofilm assay. E. coli K12 and DH5 strains are 

negative controls, and EAEC O42 is positive control for biofilm formation. The optical 

density is proportional to the amount of bacteria attached to the inert surfaces. Interrupted 

line is the threshold above which the strain is positive for biofilm formation. The threshold 

corresponds to the average of the negative controls plus 2 times the SD. In this assay, the 

threshold was set at an absorbance (A590 nm) of 0.43.
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Fig. 2. 
MLST phylogenetic tree of E. coli intestinal pathotypes isolated from children with AGE. 

Phylogenetic tree was constructed after assembly and alignment of MLST DNA sequences 

from diarrheagenic E. coli isolates using ClustalW program. E. coli MLST sequences from 

ancestral groups A, B1, B2, and D available at the MLST database (http://

mlst.warwick.ac.uk/mlst/) were used as controls. Arrows represent clinical isolates from 

Davidson County, Tennessee; thin arrows indicate EPEC study strains, and bold arrows 

indicate EAEC study strains.
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Fig. 3. 
MLST phylogenetic tree of EPEC isolates. Phylogenetic tree of the 8 EPEC MLST 

sequences were compared with MLST sequences from ancestral groups A, B1, B2, and D as 

well as EPEC sequences, available at the MLST database (http://mlst.warwick.ac.uk/mlst/). 

EPEC MLST controls included: EPEC HC68; EPEC DEC2A; EPEC 2348/69; EPEC HC10; 

EPEC HC15; EPEC Trh36; EPEC DEC6A; EPEC DEC12B; EPEC Trh37; EPEC 181; 

EPEC HC40; EPEC HC36; EPEC HC91; EPEC HC95; EPEC HC59; EPEC HC66; EPEC 

HC87; EPEC 109; EPEC 219. E. coli ancestral control strain sequences are derived from the 

ECOR collection and they include clonal group B1, Ecor26 and Ecor28; clonal group A, 

Ecor9 and Ecor10; clonal group B2, Ecor56 and Ecor60; and clonal group D, Ecor35 and 

Ecor36. Arrows represent EAEC clinical isolates from Davidson County, Tennessee.
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Fig. 4. 
MLST phylogenetic tree of EAEC isolates. Phylogenetic tree constructed after assembly and 

alignment of MLST DNA sequences using the ClustalW program. EAEC MLST sequences 

from study isolates: EN1E-0007, EN1E-0182, EN1E-0191, and EN1E-0245. E. coli MLST 

sequences from ancestral groups A, B1, B2, and D as well as STEC sequences, available at 

the MLST database, were used as controls. E. coli ancestral control strain sequences are 

derived from the ECOR collection. EAEC MLST sequences from human cases of diarrhea 

included: EAEC 4356/96; EAEC 101-1; EAEC 13-03250; EAEC 100; EAEC 236; EAEC 

C08; 42; EAEC C04; EAEC IE-3627; EAEC 10-06632; EAEC 1634; EAEC 1759; EAEC 

1772-2; EAEC 1723; EAEC 108; EAEC 1711; and EAEC 219; 188. Arrows represent 

EAEC isolates from Davidson County, Tennessee.
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Table 1

Demographics of children with acute gastroenteritis.

Negative for E. coli Positive for E. coli Pathogenic E. coli
a Total

Sex

Male 70 (63%) 41 (37%) 9 (8%) 111

Female 57 (60%) 38 (40%) 3 (3%) 95

Age

    <1 year old 46 (65%) 25 (35%) 5 (7%) 71

    1 to <2 years old 20 (53%) 18 (47%) 2 (5%) 38

    2 to <5 years old 35 (62%) 21 (38%) 3 (5%) 56

    5 to <10 years old 24 (67%) 12 (33%) 2 (6%) 36

    ≥10 years 2 (40%) 3 (60%) 0 (40%) 5

Race

    White 56 (54%) 47 (46%) 10 (8%) 103

    Black 61(68%) 29 (32%) 2 (3%) 90

    Asian 4 (100%) 0 0 4

    Other 6 (67%) 3 (33%) 0 9

a
Pathogenic E. coli are a subgroup of E. coli isolates that tested positive by PCR for either EPEC or EAEC.
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Table 2

Demographic features of AGE cases positive for diarrheagenic E. coli, December 2011–June 2012.

Sample Subject Age (months) Sex Race
a Ethnicity Month of isolation E. coli pathotype

1 EN1E-0007 18 M W NH/NL December EAEC

2 EN1E-0139 22 M W NH/NL March EPEC

3 EN1E-0182 4 F W H/L April EAEC

4 EN1E-0191 39 M W H/L May EAEC

5 EN1I-0027 2 M W NH/NL May EPEC

6 EN1I-0032 27 F W H/L May EPEC

7 EN1E-0224 41 M W NH/NL June EPEC

8 EN1E-0227 10 M B NH/NL June EPEC

9 EN1E-0232 113 F W NH/NL June EPEC

10 EN1E-0241 65 M W H/L June EPEC

11 EN1E-0245 8 M B NH/NL June EAEC

12 EN1I-0034 4 M W NH/NL June EPEC

a
Race: W represents white and B represent black. Ethnicity: H/L represents Hispanic or Latino and NH/NL represents non-Hispanic or non-Latino.
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Table 3

Genotypic and phenotypic features of diarrheagenic E. coli isolates.

Sample Subject Pathotype Virulence genes Serotype Sequence type Antibiotic resistance
b

1 EN1E-0007 EAEC aggR, aaiC O86:H27 3570 A

2 EN1E-0139 EPEC eae O6:H1 342 None

3 EN1E-0182 EAEC aggR, aaiC O86:H27 3570 A

4 EN1E-0191 EAEC aggR, aaiC O3:H2 10 A

5 EN1E-0224 EPEC eae O–:H– 10 A

6 EN1E-0227 EPEC eae O119:H21 40 A, A/C

7 EN1E-0232 EPEC eae O108:H9 302 None

8 EN1E-0241 EPEC eae O–:H– 10 A, A/C

9 EN1E-0245 EAEC aggR, aaiC O92:H33
ST4599

a A, A/C, S

10 EN1I-0027 EPEC eae O119:H30
ST4600

a A

11 EN1I-0032 EPEC eae O35:H10 10 None

12 EN1I-0034 EPEC eae O–:H9 779 A, S

a
New MLST sequence type submitted to http://mlst.warwick.ac.uk/mlst/.

b
A = ampicillin; A/C = amoxicillin/clavulanic acid; S = sulfamethoxazole-trimethoprim.

Diagn Microbiol Infect Dis. Author manuscript; available in PMC 2016 November 01.

http://mlst.warwick.ac.uk/mlst/

